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The Lunar Dust Problem

Dust mobilization
methods:

* |[nteractions with surface
electric fields

» Meteorite impacts

« Human activities

Apollo 16 LRV traverse (Credit: NASA)



The Lunar Dust Problem

» General problems
* Highly cohesive
* Retain charge in lunar vacuum
« Damaging to humans tissue

* ISRU Sp ecific groblems (International Agency
Working group, 2016, Gaier, 2007)

» Clogging mechanisms

Damage to rotating bearings/motors/drills
Seal failures

Abrasion

Compromising thermal control surfaces
Degrading solar panels

Contaminating extracted volatiles

Image credit: David S. McKay/NASA/JSC



Limit initial dust
mobilization

» E.g. fenders/sintered
roads/vehicle speed

Prevent dust
collection
* E.Q.
filters/bellows/surface
coatings
Dust removal

* E.g. brushes/electrostatic
precipitators/pressurized
gas

Dust tolerance
* E.g. ceramic bearings

Dust Mitigation Techniques

Electron Beam‘

Dust jumping
off the surface
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Glass plate w/ dust (lunar simulant, < 25
pm in diameter) resting on the surface

(Credit: I. Hahn/X. Wang/NASA)

(Credit: Eugene A. Cernan/NASA)

Summary in Cannon et al., 2022



Dust Mitigation Techniques

3.
2. Prevent dust e v
collection
° Eg Dust jumping
filters/bellows/surface off the surface
coatings

3. Dust removal

» E.g. brushes/electrostatic

precipitators/pressurized
as Glass plate w/ dust (lunar simulant, < 25
g pm in diameter) resting on the surface

4. Dust tolerance (Credit: I. Hahn/X. Wang/NASA)
» E.g. ceramic bearings Summary in Cannon et al., 2022




SPIDR

A simulation that can be used to predict how dust is mobilized following
interactions with planetary surfaces

* Questions we hope to answer:

+ What are the effects of lunar surface properties, regolith properties, and rover/excavator
design on the formation of dust clouds?

* How can we inform the design and operation of rovers/excavators to minimize dust
mobilization and collection onto sensitive surfaces?

* Properties currently being considered in the development of the simulation:
* Lunar surface environment
 Grain size and bulk porosity
» Grain charge
» Cohesion and friction



Lunar Surface Environment
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Lunar Surface Environment

Flowing Solar Wind
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[llustration of the charging environment at lunar shadowed craters (Credit: Farrell et al., 2010)




Grain Size, density, and Bulk Porosity

+ Discrete grain sizes with weighted

distributions

Grain size, d Ratio of total Ratio of total
(mm) mass (wt %) number of grains (%)
0.469 38 0.0014
0.055 32 0.72
0.012 29 60

0.0001 0.00001 38

(Preliminary testing with single grain sizes)

» Density of lunar rock taken as 3365 kg m3,

as averaged from Kiefer et al. (2012)

* Bulk porosity from upper 15 cm of lunar

soils taken as 52 + 2% (Carrier et al., 1991)

Average lunar soil

grain size distnibution
Grain size division 1 [:]

Grain size division2 |l

Grain size division 3 -

Simulated grain sizes X

0055 mm

Average grain size distribution for lunar soils taken from Zeng et al. (2010).
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Grain Charge

* Dust grains will become
triboelectrically charged in a
vacuum

 Sickafoose et al. (r2001) _
measured the surface potentials
built up in JSC-1A grains (r=50
um) in vacuum

» Using q = 4meyry¢ps With
Sickafoose et al.’s results, we
predict the charge for different
grain sizes
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Surface potentials recorded for JSC-1A (Credit: Sickafoose et al., 2001)
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Cohesion and Friction

» Different cohesive

mechanisms can be simplified

into a DEM parameter,
Cohesive Energy Density
CED,).

Y B & TR 103 0 B .~,;,=

» Bulk material flow behaviour is

dependent on the coefficient

of particle-on-particle friction,

the coefficient of rolling

friction, and CED.
° ROGSSler & Katterfe|d g20‘| 9) Particle colour: Particle velocity: Ol M>0.125m/s

devised an experimen ‘to Comparison of the experiment and the best-fit DEM parameter

Ca”brate these parameters_ combination (Credit: Roessler & Katterfeld, 2019)
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Cohesion and Friction

Initial simulation for lunar soils

Experiment with LMS-1



Building a Simulation

LIGGGHTS éLAMMPS improved for general
granular and granular heat transfer simulations)

Create rover wheel

« Simplified Apollo 16 wheel & fender
« Can use any wheel design

Defining Particles
» Size, charge, cohesive properties

Running Simulation

* Insert particles into tray
» Lower wheel into particles
* Rotate wheel
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Initial Testing

Apollo 16 ‘Grand Prix’ (Credit: NASA)
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Initial Testing

0.1 pum radius 50 um radius combined
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Next Steps

* Improve fidelity of simulation

« Update soil properties with data
from Apollo soil samples

* Apply a particle size distribution

* Investigate effects of different
lunar conditions

« How does electric field impact
dust distribution?

Flowing Solar Wind

_~Electron 2 lon Deflection
Cloud / Into Crater

T -

lllustration of the charging environment at lunar
shadowed craters (Credit: Farrell et al., 2010)



Applications

« Upcoming Lunar Terrain Vehicle and other
rover designs

» SPIDR can helps assess different wheel and fender
designs, and provide inputs into the most suitable
location of sensitive components such as solar
panels/radiators.

» SPIDR can also estimate safe ‘speed limits’ that
could keep dust mobilization down below a
desired limit.

* ISRU Excavators

» SPIDR could be used to trial different excavation
tools and modes to predict how much dust will be
mobilized and identify the most suitable tool/mode
to protect sensitive components.
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Summary

* We have created a DEM
simulation to analyze lunar dust
interactions with rover wheels

« We are using an Apollo LRV
wheel design and lunar surface
footage to help calibrate the
mode

* Preliminary results show that
particles of different sizes will be
distributed unevenly

* Further developments of the
model are Flanned and we hope
to apply it to wheel designs for
upcoming missions
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